
Vicon V-File Format
Vicon Motion Systems Limited

Issue 2
19 September 2001

1 Introduction

1.1 Aims
The purpose of this document is to outline a data-file format capable of storing all the elements
of a motion capture trial, including any pertinent subsidiary data. Currently the sum total of this
data is distributed across a number of different sources which reduces portability and increases
the chance that certain vital elements will be misplaced, potentially rendering the remaining data
useless. The aim of this document is to consolidate these disparate elements in one file to ensure
that all data within is meaningful without reference to external contexts.

1.2 Format requirements
The format must be capable of storing the following data elements: trial information; kinematic
models, including skeleton data or bone segment hierarchy and marker placement; analogue
data; miscellaneous application specific parameters; DOF, or motion, data in the form of joint
angles and/or marker positions.

1.3 Desirable qualities
Flexibility Must be able to store many different types of data without placing

undue constraint on the form of said data.

Expandable Must take into consideration future requirements for storage of
arbitrary data.

Simplicity Since it will be necessary to make format readers and writers for a
range of different software products, it must be intuitive in structure
and straightforward to construct/deconstruct.

Low data
coupling

Since the file could contain data from many different sources it must
be easy to extract only the required data. Furthermore, it must be
possible to extract small sections of data (e.g. video frames 100 to 240)
without the need to read the whole file.

Minimal
redundancy

Wherever possible the data should be minimal, without sacrificing
machine readability.

Backwards
compatibility

The format must allow for additions to its content while remaining
backwards compatible with existing files so that existing software
does not need to be modified to read older content within newer files.

Page 1 of 24

1.4 Definitions and conventions

1.4.1 Units

Rather than include parameters to describe data units, all units in the file are fixed in order to
simplify reading and writing code which only have to deal with single known unit conversions.
The V-file standard units are as follows:

Measure Units Units name
Angle rad Radians

Distance/Length mm Millimetres

Force N Newtons

Frame rate Hz Hertz

Mass Kg kilograms

Moment Nmm Newton Millimetres

Position mm Millimetres

1.4.2 Data formats

• Floating point format is Intel/PC.

• Word format is Intel/PC (little-endian).

• A “long” is a 32-bit signed value

• A “short” is a 16-bit signed value

• A “byte” is an 8-bit unsigned value.

1.4.3 General conventions

• Orientations are expressed in angle-axis format. For a description of the angle-axis
representation see Appendix A.

• The global axis system is Z-up.

• All strings should include a terminating null character, and the corresponding length field
for that string (if present) should include this in its byte count. This allows variable length
strings to be easily skipped while also making it easy to extract the string itself for
programming languages that expect either zero-terminated or length-byte-preceded text
strings.

• The maximum length of all labels, except those strings that appear as parameters since the
length is defined within the parameter record, is 255 characters including a null-
terminator.

Page 2 of 24

1.4.4 DOF tags

Dynamic data typically represents a set of degrees of freedom (DOFs) of various entities. The
DOFs that are present are described using textual tags. These take the following general format:

{subject name}:{entity label} <{suffix}>

Note that the subject name and entity label are separated by a single colon (‘:’), the entity label
and suffix are separated by a single space and the suffix is further enclosed by angle brackets (‘<’
and ‘>’).

All measurement subjects must have a name. This allows data for multiple subjects to be
contained within the same V file with consistency when there is only one subject. Entities may be
measured markers, virtual markers, body segments or any other named item.

The suffix describes the actual DOF according to the table below. Note that upper case keys in
the suffix tend to indicate global significance (e.g. global axes) whereas lower case keys indicate
local significance (e.g. local axes).

Suffix Description Entities
A-X Angle-axis rotation, global X-axis component Bodies
A-Y Angle-axis rotation, global Y-axis component Bodies
A-Z Angle-axis rotation, global Z-axis component Bodies
a-A Rotation about local primary axis Bodies
a-B Rotation about local secondary axis Bodies
a-H Rotation about local hinge axis Hinged bodies
a-X Angle-axis rotation, local X-axis component Free/Ball jointed bodies
a-Y Angle-axis rotation, local Y-axis component Free/Ball jointed bodies
a-Z Angle-axis rotation, local Z-axis component Free/Ball jointed bodies
B Binary (un-scaled) sample value Analogue channels
C-n Camera mask set, where ‘n’ is a number (1..) Markers
E Error residual value (general) Markers
E-X Error residual along global X-axis Markers
E-Y Error residual along global Y-axis Markers
E-Z Error residual along global Z-axis Markers
e-X Error residual along local X-axis Markers
e-Y Error residual along local Y-axis Markers
e-Z Error residual along local Z-axis Markers
F-X Force along global X-axis Bodies
F-Y Force along global Y-axis Bodies
F-Z Force along global Z-axis Bodies
f-X Force along local X-axis Bodies

Page 3 of 24

f-Y Force along local Y-axis Bodies
f-Z Force along local Z-axis Bodies
M-X Moment about global X-axis Bodies
M-Y Moment about global Y-axis Bodies
M-Z Moment about global Z-axis Bodies
m-X Moment about local X-axis Bodies
m-Y Moment about local Y-axis Bodies
m-Z Moment about local Z-axis Bodies
O Occluded flag (1=occluded, 0=visible) Markers, Bodies
P-X Position along global X-axis Markers, Pressure points
P-Y Position along global Y-axis Markers, Pressure points
P-Z Position along global Z-axis Markers, Pressure points
p-X Position along local X-axis Markers, Pressure points
p-Y Position along local Y-axis Markers, Pressure points
p-Z Position along local Z-axis Markers, Pressure points
S Scaled sample value Analogue channels
T-X Translation along global X-axis Bodies
T-Y Translation along global Y-axis Bodies
T-Z Translation along global Z-axis Bodies
t-X Translation along local X-axis Free moving bodies
t-Y Translation along local Y-axis Free moving bodies
t-Z Translation along local Z-axis Free moving bodies

Page 4 of 24

2 Overview
The content of a V-file can be split into three general sections as shown in Figure 1 below:

File Header

Static data

area

Dynamic data
area

Figure 1: File sections

The file header simply identifies the file to be of type ‘V’ with a format version number.

The static data area, as the name suggests, contains data which does not change over time. It
might typically include data about a motion capture trial such as skeleton data or camera data,
but in theory could contain any type of data the programmer wished. The static data area is
divided into discrete sections, and the beginning and end of each section are clearly delimited. In
this way, even if a reader encounters a section it does not know how to interpret, it can simply
ignore it.

Whereas the static data area is flexible and cosmopolitan in its storage of different types of data,
the dynamic data section contains only one type - DOF data (including analogue sample values).

2.1 File Header

This is contained in the first four bytes of the file to identify it as a valid V-file:

‘V’ ‘#’ n n

The first two bytes are a simple identifier; the second two bytes comprise a short indicating the
version number of the format. The current file version number is 1. Therefore, the actual hex
contents are:

56 23 01 00

Page 5 of 24

2.2 Static data area

The static data area is organised into sections as shown in Figure 2 below:

Section 1

Section 2

…

Section N

Static Terminator

Figure 2: Static data structure

This starts immediately after the four-byte file header and continues until the Static Terminator.
The static data area is divided into an unlimited number of clearly delimited sections which can
contain any type of data. Each section has a header which indicates what the section contains and
how long it is, thus software reading an arbitrary V-file can easily skip to the next section on
encountering a section type that is either not required or not understood.

Note that a given section must only appear once in the file.

2.2.1 Section format

Each section within the static data area has the structure shown in Figure 3 below.

Section header

Content

Optional buffer

Figure 3: Static data section format

A section begins with a section header which is a fixed length record giving information about
the data within the section - what it is, and how much there is. This is followed by the data itself,
the form of which is dictated by the section type.

A buffer may exist between the end of the section contents and the next section header. This is to
facilitate the addition or amendment of data without the need to rewrite the whole file.

Page 6 of 24

Section header

The beginning of each section is marked with a 32-byte header record:

Length ID name Trailing null characters

Length is a long that indicates the size of the section in bytes, excluding the section header itself.
Note that the optional buffer should be taken into account when calculating this value if there is
one present.

The section ID name is a unique ASCII string which identifies the content type within. The
trailing null characters pad the record out to 32 bytes, thus the maximum length of the section ID
name is 28 characters including a null terminator.

The strategy for reading the static data area of a file is to read in the next 32 byte section header,
examine its contents and if it is a section of interest, read in a further Length bytes and process. If
the section is not of interest then skip or seek forward Length bytes to reach the next section
header. Repeat as necessary or until the Static Terminator has been reached.

Example:

A “PARAMETER” section of length 300 bytes which contains parameter records would have a
header as follows:

2C 01 00 00 ‘P’ ‘A’ ‘R’ ‘A’ ‘M’ ‘E’ ‘T’ ‘E’ ‘R’ 00 00 00 … 00 00 00

2.2.2 Static Terminator

The end of the static data area is denoted by a null section header entirely filled with zeros:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 … 00 00 00

This is easy to recognise since the Length will be zero. In addition, the ID name will be blank but
only the length needs to be examined. The dynamic data area immediately follows the Static
Terminator.

2.2.3 Record-based sections

Many sections are record-based with a similar structure to that of the static data area as a whole
(compare Figure 2 and Figure 3 with Figure 4).

Page 7 of 24

Section header

Record 1

Record 2

…

Record N

Record terminator

Optional buffer

Figure 4: Record-based section structure

Record format

Every record begins with a two-byte short which indicates the length of the record in bytes, not
including the length field itself. This simple convention aside, records may take any form the
programmer wishes.

Length Content

Record terminator

Each record-based section also has a terminator which is simply a null record. A null record is
one which has a record length of zero, thus it appears as a two-byte short of value 0:

00 00

Note: If writers leave a buffer between the end of the last record of the current section and the
next section header, it will enable simple addition of records without rewriting any other part of
the file. This buffer can be created by simply overstating the section length and filling the gap
following the record terminator with zeros.

Page 8 of 24

2.3 Dynamic data area

The dynamic data section starts immediately after the static data area Section Terminator and
continues until the end of the file. It is comprised entirely of records, where each record contains
DOF data from one source for a single time frame. The sources represent different groups of
DOF channels where each group may have a different frame rate. The static data area must
contain a special section named “DataGroup” that specifies information about each source group
including which data value within each record corresponds to which DOF (see section 3.2 Data-
group section).

Dynamic record 1

Dynamic record 2

…

Dynamic record N

Figure 5: Dynamic data area format

The structure of each dynamic data record is:

Length GroupID FrameNum Value 1 Value 2 … Value N

Length is a short indicating the length of the record in bytes, excluding the Length field itself.
Note that the length of each record for a given data group will be the same throughout the file.

GroupID is a short which identifies the data group to which the data in the record corresponds
as defined in the “DataGroup” static section.

FrameNum is a long identifying the time frame number to which the data in the record
corresponds. The frame rate is defined in the corresponding “DataGroup” section record. Frame
numbers must be in ascending order within a group, but omissions are permitted since this
indicates an entire lack of data from that source. Furthermore, the order in which frames appear
across groups is unimportant. Hence data can be written out, from any source in any order, so
long as the data from any one source is stored sequentially.

Values 1 to N represent an ordered list of DOF values as defined in the corresponding
“DataGroup” section record. The data type is also defined within the “DataGroup” section
record so the DOF values for different groups may be stored as different types (e.g. float, double
or integer) but for any given group, the storage remains constant throughout the file.

Page 9 of 24

3 Standard Vicon sections

3.1 Parameter section
The parameter section is record based with a section ID name of “Parameter”. The format allows
for an arbitrary, hierarchical organisation of parameters while maintaining simplicity.

Parameter records

Each record in the section represents a single parameter. Most common data types are
represented including multi-dimensional arrays that may be used to represent text strings and
matrices (for example). Software that encounters a parameter with a data type that it does not
recognise (i.e. one that has been subsequently added) should ignore the parameter entirely.

The format is very similar to that of parameters in a C3D file:

[##]

 … …
Rec len Name len Parameter name Type D1 D2 Dims Dn Data 1 Data 2 Data m

(Where n is given by ‘Dims’ and m is D1*D2*…*Dn)

Rec len is the length of the record, excluding the rec len field, in bytes. (1 short)

Name len indicates the length of the Parameter name, in bytes, including the null terminator. (1
byte)

Parameter name is null terminated ASCII.

Type is one of the following: (1 byte)

 0 = Structure (see notes) (actual data type is ‘short’)

 1 = Binary (actual data type is ‘byte’)
 {range = 0 to 255}

 2 = Text (actual data type is ‘byte’)

 3 = 16-bit integer (actual data type is ‘short’)
 {range = -32768 to 32767}

 4 = 32-bit integer (actual data type is ‘long’)
{range = -2147483648 to 2147483647}

 5 = Floating point (actual data type is ‘float’)
 {range = 1.175494351 E – 38 to 3.402823466 E + 38}

 6 = Double precision floating point (actual data type is ‘double’)
 {range = 2.2250738585072014 E – 308 to 1.7976931348623158 E + 308}

Page 10 of 24

 7 = Boolean (actual data type is ‘byte’)
 {zero = false, nonzero = true}

Dims indicates the number of dimensions this parameter has. For instance, a scalar has zero
dimensions; a string has one; a matrix has two. (1 byte)

D1 to Dn indicate the length in each dimension, where n is the number of dimensions (given by
Dims). In the instance of multi-dimensional data, the storage order follows the FORTRAN
convention. In this format, the innermost dimension is listed first. For instance, the innermost
dimension in a conventional matrix is the number of columns - in other words there would be
<no. of rows> runs, each of length <no. of columns>. (1 short per entry)

Data 1 to m store the actual values for this parameter. The number and type of these data is
determined by the above fields.

Example

5 4 3

2 1 0

For a characteristic “MATRIX ” which is a 2x3 matrix of integers, the record would appear as
follows:

0 39 7 M A T R I X \0

0 0 0 3 0 0 0 4 0 0 0 5

3 0 2 0 3 0 2 0 0 0 0 0 0 0 1 0 0 0 2

Notes:

In some situations it is necessary to represent parameters as belonging to records. It is perfectly
feasible to define a group of parameters, each of which share the same base dimension ‘n’, (i.e.
they are all equally-sized arrays) and to order the data such that the nth instance of a parameter
“X” corresponds to the same record as the nth instance of the other parameters in the group.
However, to implement records in this manner is to leave the relationship between conceptually
grouped parameters entirely implicit. Consequently a reader of this format cannot infer that a
relationship exists, and any record-parsing is impossible.

The “structure” type permits the definition of a label from which record-based parameter labels
may be derived. All parameters which are prefixed with the structure label are deemed to be part
of the same structure and hence each must contain the same number of entries. For instance,
consider a structure parameter with a label of “Human”. Parameters such as “Human:Name”
and “Human:Age” will be regarded as part of the same structure. Thus it is simple to relate an
instance of a name to its corresponding age since they share the same index.

Note that a structure parameter must have a Dims of zero and therefore a single data item - a
two-byte short which indicates the number of instances of this structure (i.e. the number of
records). Also note that record member parameters must be prefixed by the full label of the
structure parameter. For example, if the structure parameter is labelled “Subject:Human”, then
all members of that structure must be prefixed with “Subject:Human:”. Furthermore, each
member parameter must contain the common dimension ‘N’ explicitly.

Page 11 of 24

It is important to maintain uniqueness of parameter names. In many cases, certain parameters
will occur more than once in different contexts. To eliminate possible name-clashes it is advised
that a group name be inserted at the beginning of the parameter name which indicates
specifically what the parameter applies to. For instance “Scale” could occur quite frequently in
quite different contexts. Adding a prefix, for instance “Analogue:Scale”, will eliminate potential
parameter clashes. Names can have any number of prefixes, provided that the total length does
not exceed 255 characters, affording multiple tiers of sub-labelling.

Page 12 of 24

3.2 Data-group section
This section outlines crucial information about the data-groups, including the order in which
dofs are listed within each group, which is necessary in order to interpret the dynamic data
section. Like the parameter section, this section is also record-based and therefore has a section
terminator marking the end of the last record. It has a section ID name of “Datagroup”.

Data-group records

 Group ID … Rec len FRDL Desc Type Width Num DOFS len len len DOF label 2DOF label 1 DOF label n

Rec len is the length of the record, excluding the rec len field, in bytes. (1 short)

Group ID is simply the numeric ID of this group. (1 short)

DL is the length of the desc field in bytes. (1 byte)

Desc is a simple description of the contents of this data-group in null terminated ASCII .
This description may be omitted by simply indicating a desc len of zero.

Type indicates the storage type for each DOF value. (1 byte)

It can be any of the following:

 1 = Binary (actual data type is ‘byte’)
 {range = 0 to 255}

 2 = Text (actual data type is ‘byte’)

 3 = 16-bit integer (actual data type is ‘short’)
 {range = -32768 to 32767}

 4 = 32-bit integer (actual data type is ‘long’)
{range = -2147483648 to 2147483647}

 5 = Floating point (actual data type is ‘float’)
 {range = 1.175494351 E – 38 to 3.402823466 E + 38}

 6 = Double precision floating point (actual data type is ‘double’)
 {range = 2.2250738585072014 E – 308 to 1.7976931348623158 E + 308}

 7 = Boolean (actual data type is ‘byte’)
 {zero = false, nonzero = true}

Width indicates the width, in bytes, of the type given by the type field. Of course in most
cases this will be redundant information since the width of basic types is already
defined. (1 byte)

FR is the frame rate in Hz. (1 float)

Num DOFs indicates the number of degrees-of-freedom values (and therefore labels) in
this group. (1 short)

Page 13 of 24

Each len corresponds to the length, in bytes, of the following label (including null
terminator). (1 byte)

DOF labels are simple null-terminated ASCII.

Notes:

A data-group defines an atomic set of dynamic data which arrives at the same frequency. Note
that, following this rule, different data-types cannot share the same data-group.

Example:

Consider a data-group, “1”, containing the marker positions of an L-frame as floating point
values; the marker labels being “A”, “B”, “C” and “Ref”, running at 60Hz. The record for this
data-group would appear as follows (where each box represents a single byte):

0 99 1 0 60 0 12

5 A \0

5 B \0

7 R e f

0 0 0

- T X 5 A \0- T Y 5 A \0- T

- T X 5 B \0- T Y 5 B \0- T

\0- T X 7 R e f \0- T Y 7 R

5 C T X - \0 5 C T Y - \0 5 C T Z - \0

e T Z - \0f

Z

Z

8 L r a m e \0f - 5 4

Note: For the sake of brevity the subject name has been omitted, but ordinarily including
a subject name prefix is mandatory.

Page 14 of 24

3.3 Skeleton section
[### TBD ###]

Page 15 of 24

4 Standard Vicon parameters
The following series of tables outline the format for all standard Vicon parameters and their
associated meaning. As a convention, any recurring dimension in uppercase should be treated as
a single variable, i.e. all records share the same value.

Name Type Dims Notes

Analogue:Rate float Sample rate in Hz.

Analogue:Recs struct Analogue record structure. The value stored
indicates the number of records and
corresponds to the “N” dimension in each of
the structure members.

Analogue:Recs:Label ASCII l, N N labels of length l which pertain directly to
analogue channels (i.e. label 1 for channel 1).

Analogue:Recs:Description ASCII l, N N descriptions of length l.

Analogue:Recs:Scale float N Scaling factor for each of N channels.

Analogue:Recs:Offset long N Offset to be subtracted from raw a.d.c. value
before scaling.

Analogue:Recs:Units ASCII l, N N strings of length l indicating the units for
each channel.

Name Type Dims Notes

Analysis:Recs struct Analysis record structure. The value stored
indicates the number of records and
corresponds to the “N” dimension in each of
the structure members.

Analysis:Recs:Contexts ASCII l, N N contexts of length l; the contexts must be
defined in the event_context group.

Analysis:Recs:Names ASCII l, N N variable names of length l.

Analysis:Recs:Descriptions ASCII l, N N variable descriptions of length l.

Analysis:Recs:Subjects ASCII l, N N subject names of length l. May be blank if
the variable is not associated with a particular
subject. Otherwise the subject name must be
defined in the subjects group.

Analysis:Recs:Values float N N variable values.

Analysis:Recs:Units ASCII l, N N units of length l.

Page 16 of 24

Name Type Dims Notes

Event:Recs struct Event record structure. The value stored
indicates the number of records and
corresponds to the “N” dimension in each of
the structure members.

Event:Recs:Context ASCII l, N N contexts of length l. The contexts must be
defined in the event_context group.

Event:Recs:IconId short N N values indicating the icons to associate
with each event. Applications must provide
the actual iconic representation where
appropriate. An icon ID can be thought of as
an event type.

Event:Recs:Label ASCII l, N N labels of length l.

Event:Recs:Description ASCII l, N N descriptions of length l pertaining to the
labels.

Event:Recs:Time float 2, N N times from the start of the trial (video
field 1 = time 0). Since a single floating point
number can only have 6 significant digits,
the value is stored as two numbers. The first
is the number of whole minutes and the
second is the number of seconds (and
fractions of) within the minute. To obtain the
true time, add the two together using double
precision floating point storage. Note that
times are based on stored video rate and do
not take account of the true capture rate, for
example, storing 60 for 59.94Hz captures.

Event:Recs:Subject ASCII l, N N subject names of length l pertaining to the
labels. Where the name is left blank, the
event applies to the whole trial.

Event:Recs:GenericFlag bool N N flags corresponding to the labels which
indicate whether the event is general
purpose or specific purpose. The event has
specific purpose if the flag is set to true.
General purpose events have free-entry text
labels and descriptions whereas those of
specialised events tend to be fixed.

Page 17 of 24

Name Type Dims Notes

EventContext:Recs struct Event context record structure. The value
stored indicates the number of records and
corresponds to the “N” dimension in each
of the structure members.

EventContext:Recs:IconId short N N values identifying the icons to associate
with each context. Applications must
provide the actual iconic representation
where appropriate. An icon ID can be
though of as a context type.

EventContext:Recs:Label ASCII l, N N labels of length l.

EventContext:Recs:Description ASCII l, N N descriptions pertaining to the labels
respectively.

EventContext:Recs:Colour short 3, N N colours represented as RGB values.
(Values must range from 0 to 255).

Name Type Dims Notes

ForcePlatform:Recs struct Force platform record structure. The value
stored indicates the number of records and
corresponds to the “N” dimension in each of
the structure members.

ForcePlatform:Recs:Type short N Transducer/output code for each plate
(1…N).

1 = “AMTI” with c.o.p. +Mz

2 = “AMTI” with Mx, My, Mz

3 = Kistler with 8 channel output

ForcePlatform:Recs:Corners float 3, 4, N Location of corners for rectangular plates
(1…N), measured in point:units. Corners are
in the order xy, -xy, -x-y, x-y.

ForcePlatform:Rrecs:Origin float 3, N Offsets in point:units, measured in plate co-
ordinate system, relating transducer positions
to centre of top working surface.

Type1: (1,) and (2,) are not used; (3,) is vertical
distance from transducer plane to top plate
(-ve value).

Page 18 of 24

ForcePlatform:Recs:Channel short 6, N or

8, N

ADC channel assignments per plate for:
 type 1 type 2 type 3
(1,) Fx Fx Fx(1+2)
(2,) Fy Fy Fx(3+4)
(3,) Fz Fz Fy(4+1)
(4,) Px Mx Fy(2+3)
(5,) Py My Fz1
(6,) Mz' Mz Fz2
(7,) n/a n/a Fz3
(8,) n/a n/a Fz4

Note that if mixed plate types are present and
any of them are type 3 then the dimension is
(8,) for all plates. If only type 1 and/or type 2
plates are used, the dimension may be (6,).

ForcePlatform:Zero short 2 Range of analogue sample numbers used to
establish force-plate baseline.

Name Type Dims Notes

Marker:recs struct Marker record structure. The value stored
indicates the number of records and
corresponds to the “N” dimension in each of
the structure members.

Marker:Recs:Name ASCII l, N N marker names of length l. Marker names
must be prefixed by the name of the subject
they are attached to. This prevent name
clashes.

Marker:Recs:Description ASCII l, N N marker descriptions of length l.

Marker:Recs:ParentID ASCII l, N parentID is either a segment name, in which
case this marker is local, or a subject name, in
which case this is global.

Marker:Recs:Position float 3, N 3 values indicating the Tx, Ty, Tz of this
marker. This position is either global, if the
parent ID indicates a subject, or local to the
parent segment.

Page 19 of 24

Name Type Dims Notes

Point:Labels ASCII l, n n marker labels of length l pertaining to
trajectories in dynamic data.

Point:Descriptions ASCII l, n n descriptions of length l pertaining to the n labels.

Point:MovieDelay float Synchronisation offset, in seconds, between
field 1 of the trial and the start of movie data.

Point:Angles ASCII l, n n labels of length l. Trajectories with labels
matching those in this list are to be treated as
angles rather than translations. (The units are
always degrees!!)

Point:Scalars ASCII l, n n labels of length l. Trajectories with labels
matching those in this list are to be treated as
scalars rather than translations. The value is
held in the Z component with X and Y both
zero.

Point:Powers ASCII l, n n labels of length l. Trajectories with labels
matching those in this list are to be treated as
powers rather than translations. Powers are
scalars, so the value is stored in the Z
component with X and Y both zero.

Point:Forces ASCII l, n n labels of length l. Trajectories with labels
matching those in this list are to be treated as
forces rather than translations.

Point:Moments ASCII l, n n labels of length l. Trajectories with labels
matching those in this list are to be treated as
moments rather than translations.

Point:Reactions ASCII l, n n labels of length l. Each label identifies a base
name which corresponds to three trajectories
representing force, moment and point
components. Each of the three trajectories
adds a suffix to the base name; “.F” for force;
“.M” for moment; and “.P” for point. For
instance, “LANK” would correspond to
“LANK.F”, “LANK.M” and “LANK.P”. Note
that force and moment trajectories listed in
this parameter should not appear in either of
the “point:forces” or “point:moments”
parameters.

Page 20 of 24

Name Type Dims Notes

Timecode:DropFrames bool True if SMPTE drop frame mode was in use
to indicate true 29.97Hz rather than 30Hz.

Timecode:Rate short Has the value 25 for 25Hz EBU or 30 for
30Hz or 29.97Hz SMPTE.

Timecode:Recs struct Timecode record structure. The value stored
indicates the number of records and
corresponds to the “N” dimension in each of
the structure members.

Timecode:Recs:FieldNumber long N N field numbers corresponding to the
timecode values.

Timecode:Recs:Timecode short 4, N N timecodes stored as hour, minute, second
and frame (in that order); timecodes are
assumed to increase in a linear fashion. A
subsequent timecode entry represents a
discontinuity in the incoming signal or due
to a pause/resume during capture.

Timecode:Recs:UserBits short 8 ??????

Page 21 of 24

Name Type Dims Notes

Segment:Recs struct Segment record structure. The value stored
indicates the number of records and
corresponds to the “N” dimension in each of
the structure members.

Segment:Recs:Name ASCII l, N N segment names of length l (one per record).
Segment names must be prefixed by the
name of the subject they are attached to. This
is to prevent name clashes since segment
names are often repeated.

Segment:Recs:Description ASCII l, N N segment descriptions of length l.

Segment:Recs:ParentID ASCII l, N parentID is either a segment name, in which
case this segment is local, or a subject name,
in which case this is global.

Segment:Recs:DOFs binary N bitflags indicating the rotational and
translational DOF (see 2.4 Definitions and
conventions).

Segment:Recs:Position float 3, N 3 values indicating the Tx, Ty, Tz of this
segment.

Segment:Recs:Orientation float 3, N 3 values indicating the orientation, in angle-
axis, of this segment.

Name Type Dims Notes

Subject:Recs struct Subject record structure. The value stored
indicates the number of records and
corresponds to the “N” dimension in each of
the structure members.

Subject:Recs:Name ASCII l, N N subject names of length l.

Subject:Recs:Description ASCII l, N N subject descriptions of length l.

Subject:Recs:DatagroupID short N N datagroupIDs; one per subject??????????????

Page 22 of 24

5 Usage Notes

Page 23 of 24

Page 24 of 24

Appendix A
Angle-axis representation

To represent a particular orientation in the angle-axis system, three real components are
required. These three components - X, Y and Z form a vector which indicates the axis of rotation.
The magnitude of this vector indicates the amount of rotation. This simple representation can
easily be converted to a matrix or quaternion, and back again, which is useful for interpolation
and so on.

The theory for conversion to and from a quaternion is as follows.

Consider an angle-axis A comprised of three components (Xa, Ya, Za) and a quaternion Q
comprised of four (W, Xq, Yq, Zq).

|A| = √(Xa2 + Ya2 + Za2)
|Q| = √(Xq2 + Yq2 + Zq2)

To calculate the quaternion Q from the angle-axis A use the following formula:
W = cos(|A| / 2)

if |A| ≅ 0
Xq = Xa
Yq = Ya
Zq = Za
else
Xq = Xa * sin(|A| / 2) / |A|
Yq = Ya * sin(|A| / 2) / |A|
Zq = Za * sin(|A| / 2) / |A|

To calculate the angle-axis A from the quaternion Q:

θ = 2 * arctan(|Q| / W)

if |Q| ≅ 0
Xa = Xq
Ya = Yq
Za = Zq
else

Xa = Xq * θ / |Q|
Ya = Yq * θ / |Q|
Za = Zq * θ / |Q|

	Introduction
	Aims
	Format requirements
	Desirable qualities
	Definitions and conventions
	Units
	Data formats
	General conventions
	DOF tags

	Overview
	File Header
	Static data area
	Section format
	Static Terminator
	Record-based sections

	Dynamic data area

	Standard Vicon sections
	Parameter section
	Data-group section
	Skeleton section

	Standard Vicon parameters
	Usage Notes
	Appendix A

